

ASSESSMENT OF THE FUTURE WASTE HEAT POTENTIAL FROM ELECTROLYSERS AND ITS UTILIZATION IN DISTRICT HEATING

2nd NEFI-Conference

October 13, 2022, Linz

Stefan Reuter

Ralf-Roman Schmidt

Work is part of project MEMPHIS 2.0 – "Advanced algorithm for spatial identification, evaluation of temporal availability and economic assessment of waste heat sources and their local representation", financed by IEA DHC within Annex XIII

BACKGROUND & SCOPE

- Renewable H₂ is expected to become a corner stone of a decarbonised energy system
- Existing ambitious goals in Europe
 - EU H₂ strategy: 40 GW of electrolysis by 2030
 - **RePowerEU**: 10 Mt domestic production by 2030
- District heating supply mainly based on fossil sources
 - Waste heat integration as an option for increased efficiency and decarbonization

International Energy Agency. (2021). *Global Hydrogen Review 2021*. OECD. <u>https://doi.org/10.1787/39351842-en</u>

S. Werner, International review of district heating and cooling, Energy, Volume 137, 201, https://doi.org/10.1016/j.energy.2017.04.045

EXAMPLE OF EXISTING PROJECTS ELECTROLYSER WASTE HEAT UTILIZATION

- Newly developed quarter (120,000 m²) with climate-neural energy concept
- Integration of **1 MW alkaline** electrolyser in local energy
 system
- Waste heat utilization in local heat grid increases system efficiency to 90%

Agentur Blumberg GmbH, 'Energy supply in the neighborhood', <u>https://neue-weststadt.de/en/energiekonzept/#</u> (accessed Oct. 07, 2022)

RIAN INSTITUTE

EXAMPLE OF EXISTING PROJECTS ELECTROLYSER WASTE HEAT UTILIZATION

H-flex project

- Installation of 2.5 MW PEM electrolyser to supply hydrogen refuelling station
- Waste heat utilization within adjacent laundry
- Delivery of 1.7 GWh per year increases overall system efficiency to 91%

Delivery to local consumer a) Directly (ca 60°C) b) With heat pump (ca 100 °C)

E. van der Roest et al., 'Heat utilization from hydrogen production: An example of local energy system integration', presented at the 8th International Conference on Smart Energy Systems, Aalborg, 2022

METHOD EVALUATION OF WASTE HEAT POTENTIAL

Electrolysis capacity

loomiology data				
	Waste heat share	Waste heat temperature	Technology share	
			2030	2040
AEL	20%	70°C	80%	52%
PEM-EL	25%	70°C	18%	40%
SOEL	-	-	2%	8%

Technology data

Data from

- TYNDP 2022 (ENTSO-E / ENTSOG)
- Net-Zero Emissions Scenario (IEA)

Alkaline electrolysis (AEL)

Most mature technology

Polymer electrolyte membrane (PEM-EL)

Increasing market shares

Solid oxide electrolysis (SOEL)

No useable waste heat

٠

Full load hours (FLH)

FLH depending on integration concept

- Grid connected electrolyser
- Dedicated RES (no grid connection)

Assumed FLH value: 3,500 h

RESULTS POTENTIALS EUROPE AND GLOBAL

Waste heat potential: 64% of projected district heating supply in 2040

CONCLUSIONS

Waste heat utilization from electrolysers increases the overall system efficiency

Existing barriers must to be addressed for successful implementation (temporal / locational / temperature-related mismatch)

Waste heat from electrolysers can be a key source for the decarbonization of district heating networks

THANKS FOR YOUR ATTENTION!

DI Stefan Reuter

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria M +43(0) 664 88964995 stefan.reuter@ait.ac.at | https://www.ait.ac.at